Serendip is an independent site partnering with faculty at multiple colleges and universities around the world. Happy exploring!

Next Generation Science Standards - Activity LIsting

Many of our activities for helping middle school and high school students learn life sciences are aligned with the Next Generation Science Standards (NGSS; http://www.nextgenscience.org/next-generation-science-standards). The following listing provides brief descriptions of our NGSS-related resources. The tables described in the first item below summarize the alignment of our activities with NGSS Disciplinary Core Ideas and Performance Expectations. These tables also summarize how each of these activities engages students in Scientific Practices and provides the opportunity to discuss Crosscutting Concepts. The Teacher Notes for each activity provide additional information concerning alignment with the Next Generation Science Standards.

Trophic Pyramids

In this analysis and discussion activity, students discover the reasons why (in many ecosystems) plants are more common than primary consumers, which in turn are more common than secondary consumers.

To begin, they learn about the factors that influence the net rate of biomass production. They figure out why the net rate of biomass production is lower for each higher trophic level in an ecosystem.

Then, students construct and analyze trophic pyramids. Finally, they apply what they have learned to understanding why more resources are needed to produce meat than to produce an equivalent amount of plant food.

Understanding and Predicting Changes in Population Size – Exponential and Logistic Population Growth Models vs. Complex Reality

Whooping crane

In this analysis and discussion activity, students develop their understanding of the exponential and logistic population growth models by analyzing the recovery of endangered species and growth of bacterial populations. Students learn about the processes that cause exponential or logistic population growth, interpret data from several investigations, and apply their understanding to policy questions.

Next, students analyze examples where the trends in population size do not match the predictions of the exponential or logistic population growth models. They learn that models are based on simplifying assumptions and a model’s predictions are only accurate when the simplifying assumptions are true for the population studied.
In the last section, students analyze trends in human population size and some of the factors that affect the earth’s carrying capacity for humans. 

One version of the Student Handout also includes mathematical equations for exponential and logistic population growth. Appendices to these Teacher Notes offer optional questions on food poisoning, exponential growth of a rabbit population, additional examples of exceptions to the logistic population growth model, and a research challenge (to develop proposals for sustainable use of two resources that may limit the earth’s carrying capacity for humans).

Understanding How Genes are Inherited via Meiosis and Fertilization

Process of meiosis and fertilization In this minds-on activity, students answer analysis and discussion questions to learn how a child inherits one copy of each gene from each parent via the processes of meiosis and fertilization. They analyze how the processes of meiosis and fertilization result in the alternation between diploid and haploid cells in the human lifecycle.

To learn how meiosis produces genetically diverse gametes, students analyze the results of crossing over and independent assortment.

Then, students follow the alleles of a human gene from the parents' body cells through gametes and zygote to a child’s cells. They learn how the outcomes of meiosis and fertilization can be represented in a Punnett square.

A brief final section contrasts sexual reproduction with asexual reproduction. 

This activity can be used to introduce meiosis and fertilization or to review these processes. A hands-on version of this activity is available as “Meiosis and Fertilization – Understanding How Genes Are Inherited”.

Using Models to Understand Cellular Respiration

In both versions of the Student Handout, students analyze two models of cellular respiration. The first model shows chemical equations that summarize the inputs and outputs of cellular respiration. The second model is a figure that shows the three major stages of cellular respiration and the role of mitochondria.

After students analyze these models, they use what they have learned to develop their own more complete model of cellular respiration.

Then, in the advanced version of the Student Handout, students analyze how the extensive, folded inner membrane of a mitochondrion contributes to ATP production. This analysis illustrates the general principle that structure is related to function.

The simpler version of the Student Handout is available in the first two attached files and in a Google Doc. The advanced version of the Student Handout is available in the third and fourth attached files and in a Google Doc. The Teacher Notes, available in the last two attached files, provide background information and instructional suggestions and explain how this activity is aligned with the Next Generation Science Standards.

Using Models to Understand Photosynthesis

chloroplast modelIn this analysis and discussion activity, students develop their understanding of photosynthesis by answering questions about three different models of photosynthesis.

These models are a chemical equation, a flowchart that shows changes in energy and matter, and a diagram that shows the basic processes in a chloroplast. Students use a drawing of a plant to create another model of photosynthesis.

Finally, students evaluate the advantages of each type of model for understanding photosynthesis; this helps them to appreciate the role of scientific models.

The Student Handout is available in the first two attached files and as a Google doc designed for use in distance learning and online instruction. (For additional information, see https://serendipstudio.org/exchange/bioactivities/Googledocs, especially item 7.) The Teacher Notes, available in the last two attached files, provide instructional suggestions and background information and explain how this activity is aligned with the Next Generation Science Standards.

Using Molecular and Evolutionary Biology to Understand HIV/AIDS and Treatment

Structure of HIVThis analysis and discussion activity introduces students to the biology of HIV infection and treatment, including the molecular biology of the HIV virus lifecycle and the importance of understanding molecular biology and natural selection for developing effective treatments.

The questions in this activity challenge students to apply their understanding of basic molecular and cellular biology and natural selection and interpret information presented in prose and diagrams in order to understand multiple aspects of the biology of HIV/AIDS and treatment.

UV, Mutations, and DNA Repair

Before and after UV on double helixStudents learn about the effects of UV light, mutations and DNA repair on the survival of prokaryotes and the risk of skin cancer. In the first experiment, students evaluate the effects of different durations of UV exposure on survival and population growth of Haloferax volcanii. This experiment also tests for photorepair of DNA damage. Students design the second experiment, which evaluates the effectiveness of sunscreen. In addition, students answer analysis and discussion questions that promote their understanding of molecular biology, cancer, and the interpretation of experimental results. 

Were the babies switched? – The Genetics of Blood Types and Skin Color

3 babies with different skin color

In this minds-on, hands-on activity, students learn about the genetics of ABO blood types, including multiple alleles of a single gene and codominance. Then, students use chemicals to simulate blood type tests and carry out genetic analyses to determine whether hospital staff accidentally switched two babies born on the same day.

Next, students analyze the genetics of skin color in order to understand how fraternal twins can have different skin colors. In this analysis, students learn about incomplete dominance and how a single phenotypic characteristic can be influenced by multiple genes and the environment. (NGSS)

Download Student Handout: PDF format or Word format

Download Teacher Preparation Notes: PDF format or Word format

What causes melanoma and other types of cancer?

This minds-on, analysis and discussion activity introduces students to basic cancer biology, somatic mutations, and regulation of the cell cycle.

Students view an introductory video about a teen with melanoma and then complete six sections: “What is melanoma?”, “How does a melanoma develop?”, “Why do melanoma cells divide too much?”, “Environment and inherited genes influence your risk of melanoma.”, “Different Types of Cancer”, and “Research Challenge”.

Concepts covered include cell cycle checkpoints, somatic mutations, and DNA repair enzymes

What is a species?

3 wolvesIn this analysis and discussion activity, students learn that the concept of species is useful because organisms within a species are evolving relatively independently of other populations of organisms and thus can evolve a distinctive suite of adaptive characteristics.

Students confront the difficulties of defining a species and analyze data from various examples to appreciate that these difficulties arise from the realities of evolution.

What is natural selection?

This minds-on, analysis and discussion activity introduces students to the process of natural selection, including key concepts and vocabulary.

In addition, students analyze several examples to learn about the conditions that are needed for natural selection to occur.

(This activity is an expanded version of the first section of the hands-on activity Evolution by Natural Selection.)

What types of mutations cause more vs. less severe muscular dystrophy?

This analysis and discussion activity begins with a brief video presenting the anchoring phenomenon – a teenager who has Duchenne muscular dystrophy.

Then, students investigate the types of deletion mutation that cause the more severe Duchenne muscular dystrophy vs. the milder Becker muscular dystrophy. During this analysis, students review transcription and translation, learn how to use a codon wheel, and analyze the molecular effects of different types of deletion and point mutations.

Finally, students investigate X-linked recessive mutations to understand why almost all Duchenne muscular dystrophy patients are male.

The Student Handout is available in the first two attached files and as a Google doc designed for use in online instruction and distance learning. (For additional instructions, see https://serendipstudio.org/exchange/bioactivities/Googledocs, especially item 7.) The Teacher Notes, available in the last two attached files, provide instructional suggestions and background information and explain how this activity is aligned with the Next Generation Science Standards (NGSS).

Where does a tree's mass come from?

4 hypotheses where plant's mass comes from

Students analyze evidence to evaluate four hypotheses about where a tree’s mass comes from. For example, students analyze Helmont’s classic experiment and evaluate whether his interpretation was supported by his evidence.

Thus, students engage in scientific practices as they learn that trees consist mainly of water and organic molecules and most of the mass of the organic molecules consists of carbon and oxygen atoms that came from carbon dioxide molecules in the air. (NGSS)

The Student Handout is available in the first two attached files and as a Google doc designed for use in distance learning and online instruction. (For additional instructions, see https://serendipstudio.org/exchange/bioactivities/Googledocs, especially item 7.) The Teacher Notes, available in the last two attached files, provide instructional suggestions and background information and explain how this activity is aligned with the Next Generation Science Standards.

Why and How Your Body Makes Millions of Red Blood Cells Every Minute

In this analysis and discussion activity, students learn about stem cells, cell differentiation, and how epigenetic changes and transcription factors contribute to cell differentiation. These concepts are introduced as students analyze how the body makes red blood cells.

During this activity, students review aspects of transcription and translation, mitosis, and the functions of organelles.

Why do some plants grow in odd shapes?

In this analysis and discussion activity, students investigate several examples of plants that have grown in odd shapes.

As students analyze these anchoring phenomena, they learn (1) how the zones of cell division and elongation contribute to the growth of stems and roots; (2) how the effects of a plant hormone on cell elongation contribute to plant responses to light and gravity; and (3) how differentiated cells (xylem cells, phloem cells and photosynthetic cells) cooperate to supply all parts of the plant with needed molecules and ions.

In this activity, students interpret data from scientific studies, develop and refine scientific models, and answer additional analysis and discussion questions.

This activity can be used in a unit on cells or as an activity on development after students learn about cell division.